

System Health Engineering and Management in Aerospace

Dr. Stephen B. Johnson
NASA Marshall Space Flight Center
sjohns22@uccs.edu

Outline of Talk

- Definitions
- Operational & Design Theory
- Principles

Integrated System Health Engineering & Management

- ISHEM = the processes, techniques, and technologies used to design, analyze, build, verify, and operate a system to prevent faults and/or mitigate their effects
- Technical, individual, and social aspects
- Synonym: Dependable System Design and Operations
- "Dependability"

Complexity

- Beyond the capability of any one person to understand or keep track of all details
 - Heterogeneous (power, propulsion, etc.)
 - Deep: requires many years of study to master
 - Scale: the system requires so many components that it is impossible for any one person to keep all in mind
 - Interactivity: interactions between internal components, and with the external environment are "messy"

Implication of Complexity

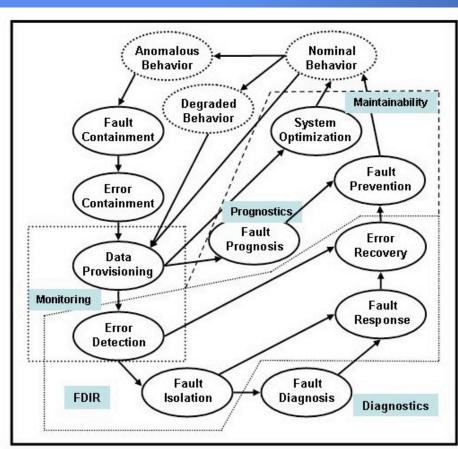
- By definition, beyond what any one person can master (our cognitive abilities are limited)
- REQUIRES communication among individuals
- Implication:
 - Engineering of a "complex" system requires excellent communication and social skills

Failure

- "A loss of intended function or performance of an unintended function."
 - Can be designer's or user's intent
- Failure is both individually and socially defined
 - "in the eye of the beholder"
 - Some "failures" are considered normal by others

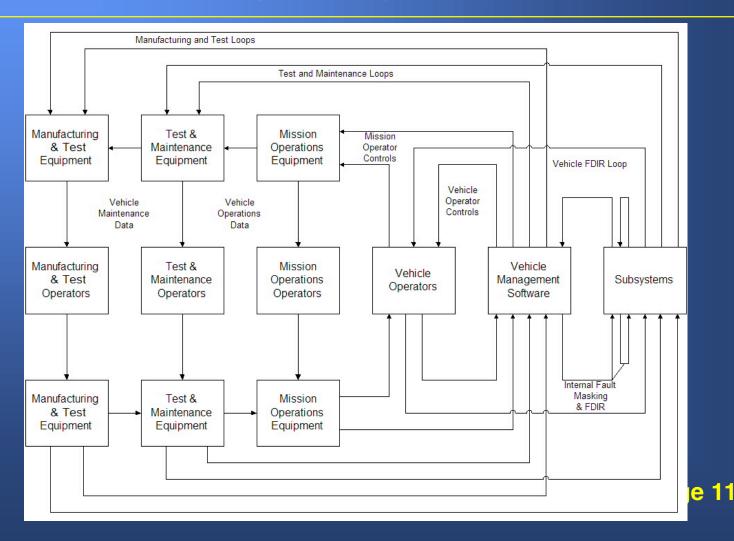
Faults and Errors

- Fault: The physical or logical cause of an anomaly.
 - The "root cause", can be at various levels
 - Might or might not lead to "failure"
- Anomaly (error): A detectable undesired state.
 - The "detector" must ultimately interpret the "state" as "undesirable"
 - Can be user, designer, others


Causes of Faults and Failures

- Individual performance failure (cognitive)
 - Lack of knowledge (unaware of data)
 - Misinterpreted data
 - Simple mistakes (transposition, sign error, poor solder, etc., usually from human inattention)
- Social performance failure (communicative)
 - Miscommunication (misinterpretation)
 - Failure to communicate: information exists, but never got to the person or people who needed it

Embedded Knowledge


- Technologies are nothing more than "embedded knowledge"
- Technologies embody (incarnate) the knowledge of their creators
- "Faults" result from flaws in the knowledge of the creators, OR mismatch in understanding between creators and users
 - Cognitive or Communicative!

ISHEM Functional Relationships

- Circular,
 "closed-loop"
 relationships
- Hints at the physical architecture

ISHEM Operational Architecture

Typical Functions, Mechanisms, and Characteristic Times

Function	Physical Mechanism	Characteristic Time
Electrical Power	Electron transport	1-10 milliseconds
Attitude Control	Thruster impulse or reaction wheel acceleration	50-500 milliseconds
Spacecraft Thermal Control	Radiative Heat Transfer	Minutes to hours
Human autonomic response	Biochemically-induced electrical signals	500 milliseconds – 1 second
Human decision-making	Verbal and visual signals between humans, and brain physiology	Minutes to days
Data computation	Electron transport and processor cycle times	10-100 milliseconds
Planetary probe radio data transfer	Electromagnetic waves	Seconds to hours

ISHEM in the System Life Cycle

	Initial Requirements	Conceptual Design	Preliminary Design	Detail Design	Fabrication and Test	Deployment & Operations
Quantitative Requirements	Reliability AllocationAvailabilityMargin PhilosophyTime to Criticality	MTTR Req't System TTC Timing Req'ts Margin Allocations	Subsystem TTC Timing Req'ts Margin Req'ts Reliability Req'ts	Final Margin & Reliability Req'ts	Requirements Updates	Requirements Updates
Qualitative Requirements	System FT Req'tsSystem FA Req'tsIsolationFault Classes for FT	Subsystem FT Req't Subsystem Functional Fault Req't	Fault Injection Req'ts SW, HW, Operations Req'ts	Final System/ Subsystem/ Component Req'ts	Requirements Updates	Requirements Updates
Fault Set Definition	Fault Classes Major Implementation Fault Types (Engine Out, Electronics,)	Subsystem Functional Faults (Top Down)	Preliminary FMEA (Bottom Up) Preliminary Fault Set Reduction for Fault Injection	Final FMEA Fault Set Reduction for Fault Injection	Updates to Fault Set	Updates to Fault Set
Fault Analysis & Modeling	System Cost / Reliability Trades Testability Analysis	System Interaction TTC Analysis Functional Fault Matrix Initial Behavioral Model	 Detailed Sys. Mod. Detailed Rel. Anal. Simulation with Fault Injection Cost / Reliability Anal. for Params. 	Simulation with Fault Injection False Alarm Analysis	Fault Injection into As Built System System Characterization Model Updates	System Characterization Model Updates Fault and Contingency Analyses
System Design	Initial System Concept Operations and Maintenance Concepts	Initial Subsystem Concept ECR/FCR Definition at Function Level	Detail ECR/FCR Parameter, Algorithm, and Sensor Selection	Final Design Threshold Determination	Design Feedback Threshold Adjustment from System Characterization	System Characterization Design Updates Contingency Plans
Verification & Validation		V&V Plan Draft for SHM Allocation of V&V Methods: Test, Analysis, Proof, Simulation	Incorporate Prelim FMEA into V&V Define Fault Inject Techniques Proof of Key Algorithms	 Test Procedures V&V by Analysis, Simulation, Test, and Formal Proof 	Subsystem and System Testing Under Stressing Conditions & Fault Conditions	Testing Updates

Principle of Knowledge Redundancy, and Limits

- Checking for failure or faults requires a separate, independent, credible knowledge source
- Commonality means that reviewers share common assumptions with the reviewed
- Independence means reviewers share nothing in common with the reviewed
- Complete independence neither possible nor desirable

Clean Interfaces

- Desired and sometimes required
- Reduce the "interactivity" between components
- Reduce the interactivity of the people and organizations designing and operating the components
- Simplifies communication, reduces chance for miscommunication!

Bureaucracy and "Situational Awareness"

- Bureaucracy needed to institute and repeat processes for dependability
- Bureaucratization: repetition and suppression or forgetting of reasons behind the rules leads to inattention or misunderstanding, and hence to faults
- Must foster individual "awareness" within the bureaucracy... create bureaucracy to fight the deadening effect of bureaucracy!

Conclusion

- NASA has a "culture problem" that leads to occasional failures
- The problem is social and cognitive as well as technical
- ISHEM to be the overarching theory over the technical, social, and cognitive aspects of preventing & mitigating failure
- We are working to install / instill ISHEM into the new Vision for Space Exploration